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If on the other hand, the boundary point is
not rigid but completely free to move (such as in
the case of a string tied to a freely moving ring
on arod), the reflected pulse has the same phase
and amplitude (assuming no energy dissipation)
as the incident pulse. The net maximum
displacement at the boundary is then twice the
amplitude of each pulse. An example of non- rigid
boundary is the open end of an organ pipe.

To summarise, a travelling wave or pulse
suffers a phase change of n on reflection at a
rigid boundary and no phase change on
reflection at an open boundary. To put this
mathematically, let the incident travelling wave
be

v, (x,2) =asin (kx—ar)

At a rigid boundary, the reflected wave is given
by
y,(x, t) = asin (kx - ot + 7).
= - asin (kx - wt) (15.35)
At an open boundary, the reflected wave is given
by
y(x, ) = asin (kx - ot + 0).

= asin (kx - ot) (15.36)

Clearly, at the rigid boundary, y=y,+y, =0
at all times.

15.6.1 Standing Waves and Normal Modes

We considered above reflection at one boundary.
But there are familiar situations (a string fixed
at either end or an air column in a pipe with
either end closed) in which reflection takes place
at two or more boundaries. In a string, for
example, a wave travelling in one direction will
get reflected at one end, which in turn will travel
and get reflected from the other end. This will
go on until there is a steady wave pattern set
up on the string. Such wave patterns are called
standing waves or stationary waves. To see this
mathematically, consider a wave travelling
along the positive direction of x-axis and a
reflected wave of the same amplitude and
wavelength in the negative direction of x-axis.
From Egs. (15.2) and (15.4), with ¢ = 0, we get:

y,(x t) = asin (kx - ot)
yz(x, t) = a sin (kx + wt)

The resultant wave on the string is, according
to the principle of superposition:

ya )= ylx ) +y,lx 0

=a [sin (kx - wt) + sin (kx + ot)]
Using the familiar trignometric identity
Sin (A+B) + Sin (A-B) = 2 sin A cosB we get,
(15.37)

Note the important difference in the wave
pattern described by Eq. (15.37) from that
described by Eq. (15.2) or Eq. (15.4). The terms
kx and wt appear separately, not in the
combination kx - wt. The amplitude of this wave
is 2a sin kx. Thus, in this wave pattern, the
amplitude varies from point-to-point, but each
element of the string oscillates with the same
angular frequency o or time period. There is no
phase difference between oscillations of different
elements of the wave. The string as a whole
vibrates in phase with differing amplitudes at
different points. The wave pattern is neither
moving to the right nor to the left. Hence, they
are called standing or stationary waves. The
amplitude is fixed at a given location but, as
remarked earlier, it is different at different
locations. The points at which the amplitude is
zero (i.e., where there is no motion at all) are
nodes: the points at which the amplitude is the
largest are called antinodes. Fig. 15.12 shows
a stationary wave pattern resulting from
superposition of two travelling waves in
opposite directions.

The most significant feature of stationary
waves is that the boundary conditions constrain
the possible wavelengths or frequencies of
vibration of the system. The system cannot
oscillate with any arbitrary frequency (contrast
this with a harmonic travelling wave), but is
characterised by a set of natural frequencies or
normal modes of oscillation. Let us determine
these normal modes for a stretched string fixed
at both ends.

First, from Eq. (15.37), the positions of nodes
(where the amplitude is zero) are given by
sin kx=0 .
which implies

kx=nm n=0,1,2,3, ...

Since, k=27/1, we get
ni

x=?;n=0, 1,2,8, ...

Clearly, the distance between any two

Yy (x, t) = 2a sin kx cos ot

(15.38)

. A
successive nodes is Z In the same way, the
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Fig. 15.12 Stationary waves arising from superposition of two harmonic waves travelling in opposite directions.
Note that the positions of zero displacement (nodes) remain fixed at all times.

positions of antinodes (where the amplitude is
the largest) are given by the largest value of sin
kx:

[sin kx| =1
which implies

kx=n+%)r;n=0,1,2,3, ...

With k=2n/A, we get

x=(n+1/2)§ 'n=0,1,2.3, ... (15.39)

Again the distance between any two consecutive

antinodes is % Eq. (15.38) can be applied to

the case of a stretched string of length L fixed
at both ends. Taking one end to be at x= 0, the
boundary conditions are that x =0 and x =L
are positions of nodes. The x = O condition is
already satisfied. The x = L node condition
requires that the length L is related to A by

L=ni;

5 n=1,2,3, ..

(15.40)

2022-23

Thus, the possible wavelengths of stationary
waves are constrained by the relation

A=2L. n=123 . (15.41)
n

with corresponding frequencies

v=10 for n=1,2,3, (15.42)

2L

We have thus obtained the natural frequencies
- the normal modes of oscillation of the system.
The lowest possible natural frequency of a
system is called its fundamental mode or the
first harmonic. For the stretched string fixed

v

at either end it is given by v="__", corresponding
to n =1 of Eq. (15.42). Here v is the speed of
wave determined by the properties of the
medium. The n = 2 frequency is called the
second harmonic; n = 3 is the third harmonic



WAVES

381

and so on. We can label the various
harmonics by the symbol v (n=1,
2,..).
ig. 15.13 shows the first six
harmonics of a stretched string
fixed at either end. A string need not
vibrate in one of these modes only.
Generally, the vibration of a string
will be a superposition of different
modes; some modes may be more
strongly excited and some less.
Musical instruments like sitar or
violin are based on this principle.
Where the string is plucked or
bowed, determines which modes are
more prominent than others.

Let us next consider normal
modes of oscillation of an air column
with one end closed and the other
open. A glass tube partially filled
with water illustrates this system.
The end in contact with water is a
node, while the open end is an
antinode. At the node the pressure
changes are the largest, while the
displacement is minimum (zero). At
the open end - the antinode, it is
just the other way - least pressure
change and maximum amplitude of
displacement. Taking the end in
contact with water to be x = 0, the
node condition (Eq. 15.38) is already

A

A NTA NTZ NZ N7Z

A

A NS NSE N NN

(@)
Fundamental
or first harmonic

(b)

second harmonic

(©

third harmonic

(d)

fourth harmonic

(e

fifth harmonic

A A A A

U]

sixth harmonic

satisfied. If the other end x= L is an
antinode, Eq. (15.39) gives

1) 4
L ”+§ 5,f0rn=0, 1,2,3, ...

The possible wavelengths are then restricted by
the relation :

2L
(n+1/2)

, forn=0,1,2,3,... (15.43)

The normal modes - the natural frequencies —
of the system are

)
n+—
2

The fundamental frequency corresponds to n=0,

v
-7 :n=0,1,2,3, ...

oL (15.44)

Fig. 15.13 The first six harmonics of vibrations of a stretched

string fixed at both ends.

and is given by L . The higher frequencies

are odd harmonics, i.e., odd multiples of the

fundamental frequency : SL, SL, etc.
4L 4L
Fig. 15.14 shows the first six odd harmonics of

air column with one end closed and the other
open. For a pipe open at both ends, each end is
an antinode. It is then easily seen that an open
air column at both ends generates all harmonics
(See Fig. 15.15).

The systems above, strings and air columns,
can also undergo forced oscillations (Chapter
14). If the external frequency is close to one of
the natural frequencies, the system shows
resonance.
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Normal modes of a circular membrane rigidly
clamped to the circumference as in a tabla are
determined by the boundary condition that no
point on the circumference of the membrane
vibrates. Estimation of the frequencies of normal
modes of this system is more complex. This
problem involves wave propagation in two
dimensions. However, the underlying physics is
the same.

P Example 15.5 A pipe, 30.0 cm long, is
open at both ends. Which harmonic mode
of the pipe resonates a 1.1 kHz source? Will
resonance with the same source be
observed if one end of the pipe is closed ?
Take the speed of sound in air as
330ms.

Answer The first harmonic frequency is given
by

y=Lb_v
14 2L
where Lis the length of the pipe. The frequency
of its nth harmonic is:

(open pipe)

_n _ .
V.= 51 forn=1, 2, 3, ... (open pipe)
First few modes of an open pipe are shown in

Fig. 15.15.

(@) (b) (©
Fundamental
or third fifth

first harmonic harmonic  harmonic
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(d) (e ®

XXXXX

eleventh
harmonic

ninth
harmonic

seventh
harmonic

Fig. 15.14 Normal modes of an air column open at
one end and closed at the other end. Only
the odd harmonics are seen to be possible.

For L=30.0cm, v=330m s,

-1
- n330 (ms™) =550 n s!
0.6 (m)

Clearly, a source of frequency 1.1 kHz will
resonate at v,, i.e. the second harmonic.
Now if one end of the pipe is closed (Fig. 15.15),

it follows from Eq. (14.50) that the fundamental
frequency is

A%

n

v, = /1—1)1:& (pipe closed at one end)
and only the odd numbered harmonics are
present :

3v 5v

Vv, = E s V5 = E

For L = 30 cm and v = 330 m s, the
fundamental frequency of the pipe closed at one
end is 275 Hz and the source frequency
corresponds to its fourth harmonic. Since this
harmonic is not a possible mode, no resonance
will be observed with the source, the moment
one end is closed. <

15.7 BEATS

‘Beats’ is an interesting phenomenon arising
from interference of waves. When two harmonic
sound waves of close (but not equal) frequencies

, and so on.
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s

Fundamental Second harmonic

or
first harmonic

Fourth harmonic

Third harmonic

Fig. 15.15 Standing waves in an open pipe, first four
harmonics are depicted.

are heard at the same time, we hear a sound of
similar frequency (the average of two close
frequencies), but we hear something else also.
We hear audibly distinct waxing and waning of
the intensity of the sound, with a frequency
equal to the difference in the two close
frequencies. Artists use this phenomenon often
while tuning their instruments with each other.
They go on tuning until their sensitive ears do
not detect any beats.

To see this mathematically, let us consider
two harmonic sound waves of nearly equal
angular frequency o, and o, and fix the location
to be x = 0 for convenience. Eq. (15.2) with a
suitable choice of phase (¢ = n/2 for each) and,
assuming equal amplitudes, gives

s,=acos ot and s, =a cos o,t (15.45)

Here we have replaced the symbol y by s,
since we are referring to longitudinal not
transverse displacement. Let o, be the (slightly)
greater of the two frequencies. The resultant
displacement is, by the principle of
superposition,

s= s +s,=alcosw, t+cos w,i)

Using the familiar trignometric identity for
cos A + cosB, we get

- t + t
= 2 a cos (wl a)z) cos (w‘ @) (15.46)
2 2
which may be written as :
s=[2 a cos o, t] cos w,t (15.47)

Iflo -0, <<, o, 0, >>a,th
a b
where

wb=(a)l_%) and a):((q+ab)
2 a
Now if we assume | o, ~®, | <<w,, which means

Musical Pillars
Temples often have
some pillars
portraying human
figures playing
musical instru-
ments, but seldom
do these pillars
themselves produce
music. At the
Nellaiappar temple
in Tamil Nadu,
gentle taps on a
cluster of pillars carved out of a single piece
of rock produce the basic notes of Indian
classical music, viz. Sa, Re, Ga, Ma, Pa, Dha,
Ni, Sa. Vibrations of these pillars depend on
elasticity of the stone used, its density and
shape.

Musical pillars are categorised into three
types: The first is called the Shruti Pillar,
as it can produce the basic notes — the
“swaras”. The second type is the Gana
Thoongal, which generates the basic tunes
that make up the “ragas”. The third variety
is the Laya Thoongal pillars that produce
“taal” (beats) when tapped. The pillars at the
Nellaiappar temple are a combination of the
Shruti and Laya types.

Archaeologists date the Nelliappar
temple to the 7th century and claim it was
built by successive rulers of the Pandyan
dynasty.

The musical pillars of Nelliappar and
several other temples in southern India like
those at Hampi (picture), Kanyakumari, and
Thiruvananthapuram are unique to the
country and have no parallel in any other
part of the world.

®, >>m,, we can interpret Eq. (15.47) as follows.
The resultant wave is oscillating with the average
angular frequency o ; however its amplitude is
not constant in time, unlike a pure harmonic
wave. The amplitude is the largest when the
term cos o, t takes its limit +1 or —1. In other
words, the intensity of the resultant wave waxes
and wanes with a frequency which is 20, = ©, -
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®,. Since ® = 27v, the beat frequency v is

given by

beat’

pear = V1~ Vs (15.48)

Fig. 15.16 111ustrates the phenomenon of

beats for two harmonic waves of frequencies 11

Hz and 9 Hz. The amplitude of the resultant wave
shows beats at a frequency of 2 Hz.

FEAAANAAAAANAD
W VVVVVVVTTT

()

PEANNANAANAN

I VAVAVAVAVAVAVAVAVAC®

(b)

Fig. 15.16 Superposition of ttwo harmonic waves, one
of frequency 11 Hz (a), and the other of
frequency 9Hz (b), giving rise to beats of
frequency 2 Hz, as shown in (c).

P Example 15.6 Two sitar strings A and B
playing the note ‘Dha’ are slightly out of
tune and produce beats of frequency 5 Hz.
The tension of the string B is slightly
increased and the beat frequency is found
to decrease to 3 Hz. What is the original
frequency of B if the frequency of A is
427 Hz ?

Answer Increase in the tension of a string
increases its frequency. If the original frequency
of B (v,) were greater than that of A (v,), further
increase in v, should have resulted in an
increase in the beat frequency. But the beat
frequency is found to decrease. This shows that
v,<v,.Since v, - v, =5 Hz, and v, = 427 Hz, we
get v, =422 Hz. <

15.8 DOPPLER EFFECT

It is an everyday experience that the pitch (or
frequency) of the whistle of a fast moving train

2022-23

Reflection of sound in an open
pipe

When a high
pressure pulse of
air travelling down
an open pipe
reaches the other
end, its momentum
drags the air out
into the open, where
pressure falls
rapidly to the
atmospheric
pressure. As a
result the air following after it in the tube is
pushed out. The low pressure at the end of
the tube draws air from further up the tube.
The air gets drawn towards the open end
forcing the low pressure region to move
upwards. As a result a pulse of high pressure
air travelling down the tube turns into a
pulse of low pressure air travelling up the
tube. We say a pressure wave has been
reflected at the open end with a change in
phase of 180°. Standing waves in an open
pipe organ like the flute is a result of this
phenomenon.

Compare this with what happens when
a pulse of high pressure air arrives at a
closed end: it collides and as a result pushes
the air back in the opposite direction. Here,
we say that the pressure wave is reflected,
with no change in phase.

decreases as it recedes away. When we
approach a stationary source of sound with high
speed, the pitch of the sound heard appears to
be higher than that of the source. As the
observer recedes away from the source, the
observed pitch (or frequency) becomes lower
than that of the source. This motion-related
frequency change is called Doppler effect. The
Austrian physicist Johann Christian Doppler
first proposed the effect in 1842. Buys Ballot in
Holland tested it experimentally in 1845.
Doppler effect is a wave phenomenon, it holds
not only for sound waves but also for
electromagnetic waves. However, here we shall
consider only sound waves.

We shall analyse changes in frequency under
three different situations: (1) observer is



WAVES

385

stationary but the source is moving, (2) observer
is moving but the source is stationary, and (3)
both the observer and the source are moving.
The situations (1) and (2) differ from each other
because of the absence or presence of relative
motion between the observer and the medium.
Most waves require a medium for their
propagation; however, electromagnetic waves do
not require any medium for propagation. If there
is no medium present, the Doppler shifts are
same irrespective of whether the source moves
or the observer moves, since there is no way of
distinction between the two situations.

15.8.1 Source Moving ; Observer Stationary

Let us choose the convention to take the
direction from the observer to the source as
the positive direction of velocity. Consider a
source S moving with velocity v, and an observer
who is stationary in a frame in which the
medium is also at rest. Let the speed of a wave
of angular frequency @ and period T, both
measured by an observer at rest with respect to
the medium, be v. We assume that the observer
has a detector that counts every time a wave
crest reaches it. As shown in
Fig. 15.17, at time t =0 the source is at point S
located at a distance L from the observer, and
emits a crest. This reaches the observer at time
t, = L/v. At time t = T, the source has moved a
distance v T, and is at point S,, located at a
distance (L + v,T) from the observer. At S,, the
source emits a second crest. This reaches the
observer at

L +v.T,

Fig. 15.17 Doppler effect (change in frequency of
wave) detected when the source is moving
and the observer is at rest in the medium.

(L+ vT)
v

t, = T, +
At time n T, the source emits its (n+1)" crest
and this reaches the observer at time
(L+ nuT,)
13

t, = nTy+

n+l
Hence, in a time interval

L+ nv.T,
[ﬂg+( so)_g}
v v
the observer’s detector counts ncrests and the
observer records the period of the wave as T
given by

L T
T = [HTO+M L

__]/n
12 v

Us TO

=T, +

- T0(1+U—5)
13}

Equation (15.49) may be rewritten in terms
of the frequency v, that would be measured if
the source and observer were stationary, and
the frequency v observed when the source is
moving, as

-1
v

Vo=V (1 +—5)
v

If v, is small compared with the wave speed v,
taking binomial expansion to terms in first order
in vy/v and neglecting higher power, Eq. (15.50)
may be approximated, giving

e

For a source approaching the observer, we
replace v, by — v, to get

(15.49)

(15.50)

(15.51)

y = v0(1+%5) (15.52)

The observer thus measures a lower frequency
when the source recedes from him than he does
when it is at rest. He measures a higher
frequency when the source approaches him.

15.8.2 Observer Source

Stationary

Moving;

Now to derive the Doppler shift when the
observer is moving with velocity v, towards the
source and the source is at rest, we have to
proceed in a different manner. We work in the

2022-23
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reference frame of the moving observer. In this
reference frame the source and medium are
approaching at speed v, and the speed with
which the wave approaches is v, + v. Following
a similar procedure as in the previous case, we
find that the time interval between the arrival
of the first and the (n+1) th crests is

nv, T,
v, +U

ta—t =nT,—

The observer thus, measures the period of the
wave to be

Vo
_To(l_vo +UJ

-1
=T, (1+U—°j
v
y = v0(1+v—°)
v

[
If FO is small, the Doppler shift is almost same

giving
(15.53)

whether it is the observer or the source moving
since Eq. (15.53) and the approximate relation
Eq. (15.51) are the same.

15.8.3 Both Source and Observer Moving
We will now derive a general expression for
Doppler shift when both the source and the
observer are moving. As before, let us take the
direction from the observer to the source as the
positive direction. Let the source and the
observer be moving with velocities v, and v,
respectively as shown in Fig.15.18. Suppose at
time t = 0, the observer is at O, and the source
is at S;, O, being to the left of S,. The source
emits a wave of velocity v, of frequency v and
period T, all measured by an observer at rest
with respect to the medium. Let L be the
distance between O; and S, at t = 0, when the
source emits the first crest. Now, since the
observer is moving, the velocity of the wave
relative to the observer is v+v,. Therefore, the
first crest reaches the observer at time t, = L/
(v+1y). At time t = T, both the observer and the
source have moved to their new positions O, and
S, respectively. The new distance between the
observer and the source, O, S,, would be
L+(vg—vg) Tyl. At S,, the source emits a
second crest.

2022-23
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Fig. 15.18 Doppler effect when both the source and
observer are moving with different
velocities.

Application of Doppler effect

The change in frequency caused by a moving object
due to Doppler effect is used to measure their
velocities in diverse areas such as military,
medical science, astrophysics, etc. It is also used
by police to check over-speeding of vehicles.

A sound wave or electromagnetic wave of
known frequency is sent towards a moving object.
Some part of the wave is reflected from the object
and its frequency is detected by the monitoring
station. This change in frequency is called Doppler
shift.

It is used at airports to guide aircraft, and in
the military to detect enemy aircraft.
Astrophysicists use it to measure the velocities
of stars.

Doctors use it to study heart beats and blood
flow in different parts of the body. Here they use
ulltrasonic waves, and in common practice, it is
called sonography. Ultrasonic waves enter the
body of the person, some of them are reflected
back, and give information about motion of blood
and pulsation of heart valves, as well as pulsation
of the heart of the foetus. In the case of heart,
the picture generated is called echocardiogram.

This reaches the observer at time.
t,=T,+[L+ (vs—-0,)T,)] /(v+v,)

At time nT, the source emits its (n+1) th crest
and this reaches the observer at time

by = T, + [L+ 1 (Vs = 0T /(v + v,)
Hence, in a time interval ¢,,,, -t;, i.e.,

nT, + [L+n(vs— )Tl /(v+v,) - L /(v+0,),
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the observer counts n crests and the observer
records the period of the wave as equal to T given by

. TO(H v, -0, ]:TO(NUS]
v+ U, v+,
(15.54)

The frequency v observed by the observer is
given by

(v + 0, ]
v=v,| —=
U+,

Consider a passenger sitting in a train moving
on a straight track. Suppose she hears a whistle
sounded by the driver of the train. What
frequency will she measure or hear? Here both
the observer and the source are moving with
the same velocity, so there will be no shift in
frequency and the passenger will note the
natural frequency. But an observer outside who
is stationary with respect to the track will note
a higher frequency if the train is approaching
him and a lower frequency when it recedes
from him.

Note that we have defined the direction from
the observer to the source as the positive
direction. Therefore, if the observer is moving
towards the source, v, has a positive (numerical)
value whereas if O is moving away from S, v,
has a negative value. On the other hand, if S is
moving away from O, v, has a positive value
whereas if it is moving towards O, v, has a
negative value. The sound emitted by the source
travels in all directions. It is that part of sound
coming towards the observer which the observer
receives and detects. Therefore, the relative
velocity of sound with respect to the observer is
v+, in all cases.

(15.55)

» Example 15.7 A rocket is moving at a
speed of 200 m s! towards a stationary
target. While moving, it emits a wave of
frequency 1000 Hz. Some of the sound
reaching the target gets reflected back to the
rocket as an echo. Calculate (1) the
frequency of the sound as detected by the
target and (2) the frequency of the echo as
detected by the rocket.

Answer (1) The observer is at rest and the
source is moving with a speed of 200 m s™'. Since
this is comparable with the velocity of sound,
330 m s, we must use Eq. (15.50) and not the
approximate Eq. (15.51). Since the source is
approaching a stationary target, v, = 0, and v
must be replaced by —v_. Thus, we have

v -1
-

v=1000Hz X [1 -200m s'/330 m s™'I!

s

~ 2540 Hz

(2) The target is now the source (because it is
the source of echo) and the rocket’s detector is
now the detector or observer (because it detects
echo). Thus, v =0 and v, has a positive value.
The frequency of the sound emitted by the source
(the target) is v, the frequency intercepted by
the target and not v. Therefore, the frequency
as registered by the rocket is

VU,
V=

v

-1 -1
—92540 Hz x 200ms +3301ms
330 ms~
~ 4080 Hz R |
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10.

11.

SUMMARY

Mechanical waves can exist in material media and are governed by Newton’s Laws.

Transverse waves are waves in which the particles of the medium oscillate perpendicular
to the direction of wave propagation.

Longitudinal waves are waves in which the particles of the medium oscillate along the
direction of wave propagation.

Progressive wave is a wave that moves from one point of medium to another.

The displacement in a sinusoidal wave propagating in the positive x direction is given
by

yx ) =asin(kx- ot+ ¢)
where a is the amplitude of the wave, k is the angular wave number, o is the angular
frequency, (kx - ot + ¢) is the phase, and ¢ is the phase constant or phase angle.

Wavelength A of a progressive wave is the distance between two consecutive points of
the same phase at a given time. In a stationary wave, it is twice the distance between
two consecutive nodes or antinodes.

Period T of oscillation of a wave is defined as the time any element of the medium
takes to move through one complete oscillation. It is related to the angular frequency o
through the relation

2
P=
@

Frequency v of a wave is defined as 1/T and is related to angular frequency by

@
V=—
2T
Speed of a progressive wave is given by p = %: % =Av
The speed of a transverse wave on a stretched string is set by the properties of the
string. The speed on a string with tension T and linear mass density u is
T
= —_—
Y

Sound waves are longitudinal mechanical waves that can travel through solids, liquids,
or gases. The speed v of sound wave in a fluid having bulk modulus B and density p is

B
v= [—
P
The speed of longitudinal waves in a metallic bar is
Y
V= [—
P
For gases, since B =YP, the speed of sound is
YP
v= |—
P
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12.

13.

14.

15.

16.

7,

When two or more waves traverse simultaneously in the same medium, the
displacement of any element of the medium is the algebraic sum of the displacements
due to each wave. This is known as the principle of superposition of waves

y=ifi(x - ut)

Two sinusoidal waves on the same string exhibit interference, adding or cancelling
according to the principle of superposition. If the two are travelling in the same
direction and have the same amplitude a and frequency but differ in phase by a phase
constant ¢, the result is a single wave with the same frequency o:

1 1
L) = = i —
ylx 0 [Za cos q)} sin (kx ot + 3 ¢]

If = 0 or an integral multiple of 27, the waves are exactly in phase and the interference
is constructive; if 9= 7, they are exactly out of phase and the interference is destructive.

A travelling wave, at a rigid boundary or a closed end, is reflected with a phase reversal
but the reflection at an open boundary takes place without any phase change.
For an incident wave
y,(x 8 = asin (kx - ot)
the reflected wave at a rigid boundary is
y,(x, ) = - asin (kx + ot)

For reflection at an open boundary

y,(x,t) = asin (kx + ot)
The interference of two identical waves moving in opposite directions produces standing
waves. For a string with fixed ends, the standing wave is given by

y(x, t) = [2a sin kx] cos ot
Standing waves are characterised by fixed locations of zero displacement called nodes

and fixed locations of maximum displacements called antinodes. The separation between
two consecutive nodes or antinodes is 1/2.

A stretched string of length L fixed at both the ends vibrates with frequencies given by

y = 22 n=1,2,3, ..
2L
The set of frequencies given by the above relation are called the normal modes of
oscillation of the system. The oscillation mode with lowest frequency is called the
Jfundamental mode or the first harmonic. The second harmonic is the oscillation mode
with n =2 and so on.

A pipe of length L with one end closed and other end open (such as air columns)
vibrates with frequencies given by

v
et n=0,1,2,3, ..
2L

The set of frequencies represented by the above relation are the normal modes of
oscillation of such a system. The lowest frequency given by v/4L is the fundamental
mode or the first harmonic.

v =(n+%)

A string of length L fixed at both ends or an air column closed at one end and open at
the other end or open at both the ends, vibrates with certain frequencies called their
normal modes. Each of these frequencies is a resonant frequency of the system.

Beats arise when two waves having slightly different frequencies, v, and v, and
comparable amplitudes, are superposed. The beat frequency is

Voear = Y1~ Vs
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18.

The Doppler effect is a change in the observed frequency of a wave when the source (S)
or the observer (O) or both move(s) relative to the medium. For sound the observed
frequency v is given in terms of the source frequency v, by

_ v+,
=y | ————
°lv +v
s
here vis the speed of sound through the medium, v, is the velocity of observer relative
to the medium, and v, is the source velocity relative to the medium. In using this
formula, velocities in the direction OS should be treated as positive and those opposite
to it should be taken to be negative.

Physical quantity | Symbol m Remarks
A [L] m

‘Wavelength Distance between two consecutive
points with the same phase.

Propagation I L] m” g _2m

constant A

Wave speed v LT ms' v=Vi

Beat frequency Viar [T s Difference of two close frequencies

of superposing waves.

1.

POINTS TO PONDER

A wave is not motion of matter as a whole in a medium. A wind is different from the
sound wave in air. The former involves motion of air from one place to the other. The
latter involves compressions and rarefactions of layers of air.

In a wave, energy and not the matter is transferred from one point to the other.

In a mechanical wave, energy transfer takes place because of the coupling through
elastic forces between neighbouring oscillating parts of the medium.

Transverse waves can propagate only in medium with shear modulus of elasticity,
Longitudinal waves need bulk modulus of elasticity and are therefore, possible in all
media, solids, liquids and gases.

In a harmonic progressive wave of a given frequency, all particles have the same
amplitude but different phases at a given instant of time. In a stationary wave, all
particles between two nodes have the same phase at a given instant but have different
amplitudes.

Relative to an observer at rest in a medium the speed of a mechanical wave in that
medium (v) depends only on elastic and other properties (such as mass density) of
the medium. It does not depend on the velocity of the source.

For an observer moving with velocity v, relative to the medium, the speed of a wave is
obviously different from v and is given by v £ v,.
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